
1. Overview
1.1. Supported operating systems

2. Contacting Pololu
3. A-Star 32U4 Micro

3.1. A-Star 32U4 Micro pinout and components
3.2. A-Star 32U4 Micro schematic and dimensions

4. A-Star 32U4 Mini
4.1. A-Star 32U4 Mini pinout and components
4.2. A-Star 32U4 Mini ULV regulator
4.3. A-Star 32U4 Mini LV regulator
4.4. A-Star 32U4 Mini SV regulator
4.5. A-Star 32U4 Mini schematic and dimensions

5. Getting started
5.1. Installing Windows drivers
5.2. Programming using the Arduino IDE
5.3. Programming using avr-gcc and AVRDUDE

6. The A-Star 32U4 USB interface
7. The A-Star 32U4 Bootloader
8. Reviving an unresponsive A-Star

8.1. Reviving using the Arduino IDE
8.2. Reviving using AVRDUDE

9. Related Resources

1. Overview

The Pololu A-Star 32U4 family of products.

The Pololu A-Star 32U4 microcontroller boards are general-purpose programmable modules based on Atmel’s ATmega32U4 AVR
microcontroller, which has 32 KB of flash program memory, 2.5 KB of RAM, and built-in USB functionality. Each A-Star (abbreviated A*) adds
onboard components and connectors that support the microcontroller and make it easier to use. The boards feature USB interfaces and ship with
a preloaded Arduino-compatible bootloader, and we provide a software add-on that enables them to be easily programmed from the Arduino
environment. The following sections of this user’s guide discuss each A-Star in more detail.

A USB A to Micro-B cable (not included) is required to connect an A-Star 32U4 to a computer.

Features

Features

Programmable 16 MHz Atmel ATmega32U4 AVR microcontroller
32 KB flash (4 KB used by bootloader, leaving 28 KB available for user program by default)

2.5 KB SRAM

1 KB EEPROM

Native full-speed USB (12 Mbps)

Preloaded with Arduino-compatible bootloader

Can be powered from USB or external source regulated to 5 V by onboard regulator

Reverse-voltage protection on external power input

6-pin ISP header for use with an external programmer

A-Star comparison table

A-Star 32U4 Micro A-Star 32U4 Mini ULV A-Star 32U4 Mini LV A-Star 32U4 Mini SV

Microcontroller: ATmega32U4 ATmega32U4

User I/O lines: 151 26

PWM outputs: 7 7

Analog inputs: 8 12

User LEDs: 2 3

Reset button:

Operating voltage: 5.5 V to 15 V 0.5 V to 5.5 V 2.7 V to 11.8 V 5 V to 36 V

Regulator type: linear switching step-up switching step-up/step-down switching step-down

Regulated current2: 100 mA 500 mA 1000 mA 500 mA

Dimensions: 1″ × 0.6″ 1.9″ × 0.7″

Weight3: 1.3 g 3.4 g

1 Three extra digital I/O lines are accessible through the ISP header.

2 These values are rough approximations for comparison purposes. Available current depends on input voltage, current consumed by the board,
ambient conditions, and regulator topology. See product documentation and performance graphs for details.

3 Without included optional headers.

1.1. Supported operating systems

The A-Star 32U4 boards can be programmed using any operating system that supports the Arduino environment. We have tested the A-Stars,
our Arduino software add-on, and the Arduino IDE on Microsoft Windows 8.1, 8, 7, Vista, XP (with Service Pack 3), Linux, and Mac OS X.

2. Contacting Pololu

We would be delighted to hear from you about any of your projects and about your experience with
the Pololu A-Stars. You can contact us directly or post on our forum. Tell us what we did well,
what we could improve, what you would like to see in the future, or anything else you would like to
say!

3. A-Star 32U4 Micro

3.1. A-Star 32U4 Micro pinout and components

3. A-Star 32U4 Micro

3.1. A-Star 32U4 Micro pinout and components

Pinout

The diagram above identifies the I/O and power pins on the A-Star 32U4 Micro; yellow labels represent digital I/O pins and green labels
represent analog input channels. Light text on a dark background indicates Arduino digital and analog pin numbering, which can be used to refer
to the pins when writing code in the Arduino environment. Dark text on a light background indicates a name or function of the pin as defined in
the ATmega32U4 datasheet. For more information about the ATmega32U4 microcontroller on this board, see Atmel’s ATmega32U4
documentation.

Printed on the A-Star are indicators that you can use to quickly identify each pin’s capabilities: a triangle next to the pin means it can be used as
an analog input, and a square wave symbol under the pin number means it can be used as a PWM output.

Additionally, three of the pins on the 6-pin ISP header can be used for SPI communication or general-purpose I/O (see the “Connectors” section
below).

LEDs

The A-Star 32U4 Micro has two indicator LEDs.

The yellow LED is connected to Arduino pin 13, or PC7. You can drive this pin high in a user program to turn this LED on. The A-Star 32U4
Bootloader fades this LED on and off while it is waiting for a sketch to be loaded.

The green LED is connected to PD5 and lights when the pin is driven low. While the board is running the A-Star 32U4 Bootloader or a program
compiled in the Arduino environment, it will flash this LED when it is transmitting data via the USB connection.

Connectors

The A-Star 32U4 includes a USB Micro-B connector that can be used to connect to a computer’s USB port via a USB A to Micro-B cable (not
included). The USB connection can be used to transmit and receive data from the computer, and a preloaded USB bootloader makes it possible
to program the board over USB. The USB connection can also provide power to the A-Star.

The board also has a 6-pin ISP header that allows it to be programmed with an external programmer, such as our USB AVR programmer. Pin 1
of the header is indicated with a small white dot and has an octagonal shape. Three of the pins on this header can be used as an SPI interface or
as general-purpose digital I/O, as shown in the following diagram:

Pinout of the ISP connector on the A-Star 32U4 Micro
(Arduino pin numbers and aliases in bold; datasheet

pin numbers in parentheses).

In the Arduino environment, you can refer to these three pins using either their pin numbers or the names of their SPI functions (which are
defined as aliases); for example, digitalRead(15) and digitalRead(SCK) are equivalent.

Power

The A-Star 32U4 Micro can either be powered directly from the USB 5 V supply or from a separate source on the VIN pin. The board features
a power selection circuit that allows both USB and VIN to be connected at the same time; if this is done, the A-Star will draw power from USB.

USB power input: The A-Star can be powered from the USB 5 V bus voltage (VBUS) if it is connected to a USB cable. A resettable PTC fuse
on VBUS makes it less likely for the A-Star (and the connected computer or other device) to be damaged if too much current is drawn from the
USB connection.

VIN power input: The A-Star can be powered from VIN if you connect a 5.5 V to 15 V power supply (such as a battery or wall power adapter)
to the VIN and GND pins, with the positive terminal connected to VIN. It will draw power from VIN only if USB is disconnected.

When powering the A-Star 32U4 Micro from VIN, a minimum voltage of 5.5 V is required to ensure that the board’s 5 V supply is
stable. Even if power is being provided to the A-Star via USB, connecting a voltage higher than 0 V but lower than 5.5 V to VIN is
not recommended, as this can interfere with the power selection circuit and cause the 5 V line to drop (potentially triggering a
brown-out reset).

5V power output: This pin provides access to the board’s 5 V supply, which comes from either the USB 5 V bus voltage or a low-dropout
(LDO) regulator on VIN, depending on which power source is connected. The regulator can supply up to 100 mA, although some of this is used
by the board itself (typically about 25 mA) or used to provide current for the GPIO pins or 3.3 V power output (see below).

3V3 power output: This pin gives access to the output of the internal 3.3 V regulator inside the ATmega32U4. The microcontroller uses this
regulated voltage for USB signaling, but up to about 50 mA is available for powering external circuits or devices.

When the A-Star 32U4 Micro is being powered through VIN, the sum of the 5V output current, 3V3 output current, GPIO output current, and
current used by the board itself should not exceed the 100 mA that the regulator can provide.

3.2. A-Star 32U4 Micro schematic and dimensions

Schematic diagram

Pololu A-Star 32U4 Micro schematic diagram.

This schematic is also available as a PDF: A-Star 32U4 Micro schematic diagram (253k pdf).

Dimension diagram

A dimension diagram of the A-Star 32U4 Micro is available as a PDF: A-Star 32U4 Micro dimension diagram (116k pdf).

4. A-Star 32U4 Mini

4.1. A-Star 32U4 Mini pinout and components

Pinout

This diagram identifies the I/O and power pins on the A-Star 32U4 Mini (ULV, LV, and SV versions); it is also available as a printable PDF
(269k pdf). For more information about the ATmega32U4 microcontroller and its peripherals, see Atmel’s ATmega32U4 documentation.

Printed on the A* circuit board are indicators that you can use to quickly identify each pin’s capabilities: a triangle next to the pin means it can be
used as an analog input, and a square wave symbol under the pin number means it can be used as a PWM output.

LEDs

The A-Star 32U4 Mini has three indicator LEDs.

The yellow LED is connected to Arduino pin 13, or PC7. You can drive this pin high in a user program to turn this LED on. The A-Star 32U4
Bootloader fades this LED on and off while it is waiting for a sketch to be loaded.

The green LED is connected to the pin labeled TXL, or PD5, and lights when the pin is driven low. While the board is running the A-Star 32U4
Bootloader or a program compiled in the Arduino environment, it will flash this LED when it is transmitting data via the USB connection.

The red LED is connected to the pin labeled RXL, or PB0, and lights when the pin is driven low. While the board is running the A-Star 32U4
Bootloader or a program compiled in the Arduino environment, it will flash this LED when it is receiving data via the USB connection.

Connectors

The A-Star 32U4 includes a USB Micro-B connector that can be used to connect to a computer’s USB port via a USB A to Micro-B cable (not
included). The USB connection can be used to transmit and receive data from the computer, and a preloaded USB bootloader makes it possible
to program the board over USB. The USB connection can also provide power to the A-Star.

The board also has a 6-pin ISP header that allows it to be programmed with an external programmer, such as our USB AVR programmer. Pin 1
of the header is indicated with a small dot and has an octagonal shape.

Power

The A-Star 32U4 Mini can either be powered directly from the USB 5 V supply or from an external voltage source, which is regulated to 5 V by
its onboard switching regulator.

The board’s power selection circuit uses the TPS2113A power multiplexer from Texas Instruments to choose whether its 5 V supply is sourced
from USB or an external supply via the regulator, allowing both sources to be connected at the same time and enabling the A-Star to safely and
seamlessly transition between them. The TPS2113A is configured to select external power unless the regulator output falls below about 4.5 V. If
this happens, it will select the higher of the two sources, which will typically be the USB 5 V bus voltage if the A* is connected to USB. The
currently selected source is indicated by the STAT pin in the middle of the board; this pin is an open-drain output that is low if the external power
source is selected and high-impedance if the USB supply is selected. The current limit of the TPS2113A is set to about 1.9 A. For more
information about the power multiplexer, see the TPS2113A datasheet (1MB pdf).

In some situations, it might be undesirable for the A-Star 32U4 Mini to draw power from an external source when it is connected to USB. If this
is the case, the regulator can be disabled by driving the regulator shutdown pin, SHDN, high; this shuts down the regulator and causes the power
mux to fall back to USB power. For example, this could allow a battery-powered device to turn off the regulator and avoid draining its battery
while it is connected to a computer.

The input voltage range of the regulator depends on the particular version of the A-Star 32U4 Mini:

ULV: 0.5 V to 5.5 V (see Section 4.2 for regulator details)

LV: 2.7 V to 11.8 V (see Section 4.3 for regulator details)

SV: 5 V to 36 V (see Section 4.4 for regulator details)

Reverse-protected power inputs: The BAT+ and BAT- pins are power inputs with reverse-voltage protection. These are the recommended pins

A-Star 32U4 Mini ULV, bottom view with
dimensions.

SV: 5 V to 36 V (see Section 4.4 for regulator details)

Reverse-protected power inputs: The BAT+ and BAT- pins are power inputs with reverse-voltage protection. These are the recommended pins
to use when connecting an external power supply because they allow the A-Star’s reverse-voltage protection circuit to help prevent it from being
damaged by accidentally-reversed power connections.

VIN power output (or alternative input): When power is supplied through the BAT pins, the VIN pin can be used as an output to supply
reverse-protected power to other devices. Alternatively, the external supply can be connected directly between VIN and GND, bypassing the
reverse-voltage protection.

5V power output: This pin provides access to the board’s 5 V supply, which comes from either the USB 5 V bus voltage or the onboard
switching regulator, depending on which power sources are connected and enabled. Note that some of the available current on the 5 V line is
used by the board itself (typically about 30 mA) or used to provide current for the GPIO pins or 3.3 V power output (see below).

3V3 power output: This pin gives access to the output of the internal 3.3 V regulator inside the ATmega32U4. The microcontroller uses this
regulated voltage for USB signaling, but up to about 50 mA is available for powering external circuits or devices.

When the A-Star 32U4 Mini is being powered through VIN, the sum of the 5V output current, 3V3 output current, GPIO output current, and
current used by the board itself should not exceed the maximum current that the regulator can provide; see the following sections for details
about the regulator on each version.

4.2. A-Star 32U4 Mini ULV regulator

The A-Star Mini ULV can be powered from a 0.5 V to 5.5 V external source. The input
voltage is regulated to 5 V by a TPS61202 switching step-up (boost) converter from Texas
Instruments. (We also make a standalone regulator based on this integrated circuit.)

The regulator’s low minimum input voltage makes it possible to power this A* with 1 to 3
NiMH, NiCd, or alkaline cells or from a single lithium cell. Unlike standard boost
regulators, the TPS61202 also features a linear down-regulation mode that is automatically
enabled when the input voltage exceeds 5 V, allowing it to handle input voltages as high as
5.5 V.

As shown in the left graph below, the ULV’s switching regulator has an efficiency –
defined as (Power out)/(Power in) – of 70% to 90% for most combinations of input
voltage and load.

The A-Star’s components, including the microcontroller and LEDs, draw 30 mA to 40 mA in typical applications. The rest of the regulator’s
achievable output current, which depends on input voltage as well as ambient conditions, can be used to power other devices. The right graph
above shows output currents at which the voltage regulator’s over-temperature protection typically kicks in after a few seconds. These currents

t th li it f th l t ’ bilit d t b t i d f l i d d ti t f th i ti l t

A-Star 32U4 Mini LV, bottom view with
dimensions.

The A-Star’s components, including the microcontroller and LEDs, draw 30 mA to 40 mA in typical applications. The rest of the regulator’s
achievable output current, which depends on input voltage as well as ambient conditions, can be used to power other devices. The right graph
above shows output currents at which the voltage regulator’s over-temperature protection typically kicks in after a few seconds. These currents
represent the limit of the regulator’s capability and cannot be sustained for long periods; a good estimate for the maximum continuous regulator
output current is 60% to 70% of the values shown in the graph.

4.3. A-Star 32U4 Mini LV regulator

The A-Star Mini LV can be powered from a 2.7 V to 11.8 V external source. The input
voltage is regulated to 5 V by a TPS63061 switching step-up/step-down (buck-boost)
converter from Texas Instruments. (We also make a standalone regulator based on this
integrated circuit.)

The regulator’s flexibility in input voltage is especially well-suited for battery-powered
applications in which the battery voltage begins above 5 V and drops below 5 V as the
battery discharges. Without the typical restriction on the battery voltage staying above 5 V
throughout its life, a wider range of battery types can be considered. For example:

A 4-cell battery holder, which might have a 6 V output with fresh alkalines or a 4.0 V
output with partially discharged NiMH cells, can be used to power this A*.

A disposable 9 V battery powering the board can be discharged to under 3 V instead
of cutting out at 6 V, as with typical linear or step-down regulators.

As shown in the left graph below, the LV’s switching regulator has an efficiency – defined
as (Power out)/(Power in) – of 80% to 90% for most combinations of input voltage and
load.

The A-Star’s components, including the microcontroller and LEDs, draw 30 mA to 40 mA in typical applications. The rest of the regulator’s
achievable output current, which depends on input voltage as well as ambient conditions, can be used to power other devices. The right graph
above shows output currents at which the voltage regulator’s over-temperature protection typically kicks in after a few seconds. These currents
represent the limit of the regulator’s capability and cannot be sustained for long periods; a good estimate for the maximum continuous regulator
output current is 60% to 70% of the values shown in the graph.

4.4. A-Star 32U4 Mini SV regulator

The A-Star Mini SV can be powered from a 5 V to 36 V external source. The input
voltage is regulated to 5 V by a 500 mA ISL85415 switching step-down (buck) converter
from Intersil. (We also make a standalone regulator based on this integrated circuit.)

As shown in the left graph below, the SV’s switching regulator has an efficiency – defined
as (Power out)/(Power in) – of 80% to 95% for most combinations of input voltage and
load.

A-Star 32U4 Mini SV, bottom view with
dimensions.

The A-Star’s components, including the microcontroller and LEDs, draw 30 mA to 40 mA in typical applications. The rest of the regulator’s
achievable output current, which depends on input voltage as well as ambient conditions, can be used to power other devices. The right graph
above shows output currents at which the voltage regulator’s over-temperature protection typically kicks in after a few seconds. These currents
represent the limit of the regulator’s capability and cannot be sustained for long periods; a good estimate for the maximum continuous regulator
output current is 60% to 70% of the values shown in the graph or 500 mA, whichever is lower (the regulator is not rated for operation above
500 mA).

4.5. A-Star 32U4 Mini schematic and dimensions

Schematic diagram

The schematic diagram for the A-Star 32U4 Minis is available as a PDF: A-Star 32U4 Mini schematic diagram (451k pdf).

Dimension diagrams

Dimension diagrams for the A-Star 32U4 Minis are available as PDFs:

A-Star 32U4 Mini ULV dimension diagram (205k pdf)

A-Star 32U4 Mini LV dimension diagram (217k pdf)

A-Star 32U4 Mini SV dimension diagram (217k pdf)

5. Getting started

5.1. Installing Windows drivers

If you use Windows XP, you will need to have either Service Pack 3 or Hotfix KB918365 installed before installing the A-Star
drivers. Some users who installed the hotfix have reported problems which were solved by upgrading to Service Pack 3, so we
recommend Service Pack 3 over the hotfix.

Before you connect your Pololu A-Star 32U4 to a computer running Microsoft Windows, you must install its drivers:

1. Download the A-Star Software and Drivers (98k zip) and extract the ZIP file to a temporary folder on your computer. These files are
also available from the A-Star repository on GitHub.

2. Open the “drivers” folder. Right-click on “a-star.inf” and select “Install”.

3. Windows will ask you whether you want to install the drivers. Click “Install” (Windows 8, 7, and Vista) or “Continue Anyway”
(Windows XP).

4. Windows will not tell you when the installation is complete, but it should be done after a few seconds.

Windows 8, Windows 7, and Windows Vista users: After installing the drivers, your computer should automatically recognize the A-Star when
you connect it via USB. No further action from you is required. However, the first time you connect an A-Star to your computer, Windows will
take several seconds to recognize the device and configure itself properly. The first time you program the A-Star, Windows will again take several
seconds to recognize the A-Star’s USB bootloader, and this could cause the programming operation to fail the first time. Also, Windows will need
to re-recognize the A-Star and the bootloader if you connect the board to another USB port that it has not been connected to before.

Windows XP users: After installing the drivers, you will need to follow steps 5–9 for each new A-Star you connect to your computer. You will
also need to follow these steps the first time you attempt to program the A-Star in order to make Windows recognize the bootloader, and when
you connect the A-Star to a different USB port that it has not been connected to before.

5. Connect the A-Star to your computer’s USB port.

6. When the “Found New Hardware Wizard” is displayed, select “No, not this time” and click “Next”.

7. On the second screen of the “Found New Hardware Wizard”, select “Install the software automatically” and click “Next”.

8. Windows XP will warn you again that the driver has not been tested by Microsoft and recommend that you stop the installation. Click
“Continue Anyway”.

9. When you have finished the “Found New Hardware Wizard”, click “Finish”.

5.2. Programming using the Arduino IDE

The Pololu A-Star 32U4 boards can be programmed from the popular Arduino integrated
development environment (IDE). The Arduino IDE is a cross-platform, open source
application that integrates a C++ code editor, the GNU C++ compiler, and a program
upload utility. To get started programming your A-Star with the Arduino IDE, follow
these steps:

1. Download the Arduino IDE from the Arduino Download page and install it. You
can download either the 1.0.x version or the 1.5.x version; the A-Stars support both.

2. If you have not done so already, download the A-Star Software and Drivers (98k
zip). These files are also available from the A-Star repository on GitHub. Copy the
“pololu” folder from the downloaded “add-on” folder into the [sketchbook

Programming the A-Star 32U4 from the Arduino
IDE.

2. If you have not done so already, download the A-Star Software and Drivers (98k
zip). These files are also available from the A-Star repository on GitHub. Copy the
“pololu” folder from the downloaded “add-on” folder into the [sketchbook
location]/hardware folder. You can see the sketchbook location in the Arduino IDE
Preferences dialog, which is available from the File menu. For a typical user, the
sketchbook location will be a folder named Arduino inside the Documents folder. For a
typical user running a recent version of Windows, the “pololu” folder should be
installed in this location:

C:\Users\<username>\Documents\Arduino\hardware\pololu

If the “Arduino” or “hardware” directories do not exist yet, you will need to create
them.

3. Close the Arduino IDE if it is open, and then restart it.

4. In the Tools > Board menu, select the “Pololu A-Star 32U4” entry. If you do not see the A-Star listed in the Board menu, then the
add-on is probably not installed correctly. Try doing step 2 again and restarting the Arduino IDE.

Selecting the Pololu A-Star 32U4 in the Boards menu.

5. In the Tools > Port menu, select the port for the A-Star. On Windows you can determine what COM port the A-Star is assigned to by
looking at the “Ports (COM & LPT)” section of the Device Manager. On Linux, the port name will begin with “/dev/ttyACM”. On Mac OS
X, the port name will begin with “/dev/tty.usbmodem”.

Windows 8 device manager showing the A-Star’s virtual COM port.

6. Open up the “Blink” Arduino example, which can be found under File > Examples > 01.Basics > Blink. The code in this example will
make the A-Star blink its yellow LED. When you select the Blink example, a new Arduino IDE window will open up. It is OK to close the
first window.

Selecting the Blink example in the Arduino IDE.

7. Press the “Upload” button to compile the sketch and upload it to the A-Star. If everything goes correctly, you will see the message
“Done uploading” appear near the bottom of the window. If you are using Windows and you have not previously programmed an A-Star on
this USB port, then Windows might take several seconds to recognize the A-Star bootloader. The bootloader times out after 8 seconds and
goes back to running the sketch, so the upload might fail if Windows does not recognize it quickly enough. If this happens, try again. If you
are using Windows XP and have not programmed an A-Star on this USB port, you will have to go through the Found New Hardware
Wizard again as described in Section 5.1, but the second time you try to upload it should work. If the Arduino IDE has trouble connecting
to the port or using it, try unplugging the A-Star, closing any programs that might be using the serial port, restarting the Arduino IDE, and
then plugging the A-Star back in.

Uploading a sketch to the A-Star using the Arduino IDE.

8. If you uploaded the Blink sketch, then the A-Star’s yellow LED should be blinking once every two seconds. However, we ship the
A-Stars with that same example already programmed onto it, so you might not be convinced that anything has changed. Try changing the
delay values in the sketch to something else and uploading again to see if you can change the speed of the LED.

The A-Star 32U4 boards are similar enough to the Arduino Leonardo that you do not actually have to install the add-on. If you
want to, you can just select the “Arduino Leonardo” board in the Arduino IDE. Note that if you upload a sketch to the A-Star
this way, your computer will then recognize it as a Leonardo (for example, its entry in the Windows Device Manager will display
“Arduino Leonardo”).

After you succeed in programming the A-Star from the Arduino IDE, there are many resources you can use to learn more:

The Arduino IDE has many examples that can run on A-Stars.

The Arduino website has a Language Reference, a wiki called the The Arduino Playground, and other resources.

The A-Star 32U4 boards are similar to the Arduino Leonardo and Arduino Micro, so you can search the Internet for relevant projects
that use one of those boards.

Section 9 lists many more resources.

that use one of those boards.

Section 9 lists many more resources.

5.3. Programming using avr-gcc and AVRDUDE

This section explains how to program the A-Star boards using the avr-gcc toolchain and AVRDUDE. This section is intended for advanced users
who do not want to use the Arduino IDE as described in Section 5.2.

Getting the prerequisites

If you are using Windows, we recommend downloading WinAVR, which contains the avr-gcc toolchain and a command-line utility called
AVRDUDE that can be used to upload programs to the A-Star bootloader. If the version of GNU Make that comes with WinAVR crashes on
your computer, we recommend using the Pololu version of GNU Make.

If you are using Mac OS X, we recommend downloading the CrossPack for AVR Development.

If you are using Linux, you will need to install avr-gcc, avr-libc, and AVRDUDE. Ubuntu users can get the required software by running:

sudo apt-get install gcc-avr avr-libc avrdude

After you have installed the prerequisites, open a command prompt and try running these commands to make sure all the required utilities are
available:

avr-gcc -v
avr-objcopy -V
make -v
avrdude

If any of those commands fail, make sure the desired executable is installed on your computer and make sure that it is in a directory listed in your
PATH environment variable.

Compiling an example program

Copy the following code to a file named “main.c”:

In the same folder, create a file named “Makefile” with the following contents:

PORT=\\\\.\\USBSER000
MCU=atmega32u4
CFLAGS=-g -Wall -mcall-prologues -mmcu=$(MCU) -Os
LDFLAGS=-Wl,-gc-sections -Wl,-relax
CC=avr-gcc
TARGET=main
OBJECT_FILES=main.o

all: $(TARGET).hex

clean:
rm -f *.o *.hex *.obj *.hex

%.hex: %.obj
avr-objcopy -R .eeprom -O ihex $< $@

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

#define F_CPU 16000000
#include <avr/io.h>
#include <util/delay.h>

int main()
{
 DDRC |= (1 << DDC7); // Make pin 13 be an output.
 while(1)
 {
 PORTC |= (1 << PORTC7); // Turn the LED on.
 _delay_ms(500);
 PORTC &= ~(1 << PORTC7); // Turn the LED off.
 _delay_ms(500);
 }
}

?

%.hex: %.obj
avr-objcopy -R .eeprom -O ihex $< $@

%.obj: $(OBJECT_FILES)
$(CC) $(CFLAGS) $(OBJECT_FILES) $(LDFLAGS) -o $@

program: $(TARGET).hex
avrdude -p $(MCU) -c avr109 -P $(PORT) -U flash:w:$(TARGET).hex

Make sure that the PORT variable in the Makefile is set to the name of the A-Star’s virtual serial port. In Windows, \\\\.\\USBSER000
should work if the A-Star is the only USB device connected that is using the usbser.sys driver, but you can change it to be the actual name of the
COM port (e.g. COM13).

In a command prompt, navigate to the directory with the Makefile and main.c. If you run the command make, the code should get compiled and
produce a file named “main.hex”.

Programming

To program the A-Star, you will need to get it into bootloader mode first. One way to do this is to reset the AVR twice within 750 ms. The
A-Star 32U4 Mini boards have a reset button that can be used to reset the board. On any A-Star board, a pushbutton can be connected between
the GND and RST pins to serve as a reset button, or you can use a wire. Once the A-Star is in bootloader mode, quickly run the command
make program to program the A-Star. If you wait longer than 8 seconds, the A-Star bootloader will exit and the AVR will go back to running
the user program.

6. The A-Star 32U4 USB interface

The A-Star 32U4 boards are based on a single AVR ATmega32U4 microcontroller that runs the user program and also handles the USB
connection to the computer. The AVR has a full-speed USB transceiver built into it and can be programmed to present almost any type of USB
device interface to the computer.

USB is an asymmetric system that consists of a single “host” connected to multiple “devices”. The host is typically a personal computer. The
ATmega32U4 can only act as a USB device, so an A-Star cannot be connected to other USB devices; it can only be connected to a host such as
your computer.

Programming an A-Star using the Arduino IDE as described in Section 5.2 will automatically configure it as a composite device with a single
virtual serial port and a human interface device (HID) with a keyboard and mouse. Since we preload an example Arduino sketch on each A-Star
before it ships, this is the default USB configuration of the A-Star.

On a Windows computer, you can see the virtual serial port by going to your computer’s Device Manager and expanding the “Ports (COM &
LPT)” list. You should see a COM port labeled “Pololu A-Star 32U4”. In parentheses after the name, you will see the name of the port (e.g.
“COM3” or “COM4”). Windows will assign a different COM port number to the A-Star depending on what USB port you plug it into and
whether it is in bootloader mode or not. If you need to change the COM port number assigned to the A-Star, you can do so using the Device
Manager. Double-click on the COM port to open its properties dialog, and click the “Advanced…” button in the “Port Settings” tab. From this
dialog you can change the COM port assigned to the A-Star.

Windows 8 device manager showing the A-Star’s virtual COM port.

On a Windows computer, you can see the rest of the A-Star’s USB interface by going to the Device Manager, selecting View > Devices by
connection, and then expanding entries until you find the “Pololu A-Star 32U4” COM port. Near it, you should see the parent composite device
and the human interface device.

On a Windows computer, you can see the rest of the A-Star’s USB interface by going to the Device Manager, selecting View > Devices by
connection, and then expanding entries until you find the “Pololu A-Star 32U4” COM port. Near it, you should see the parent composite device
and the human interface device.

The Windows 8 Device Manager in “Devices by connection” mode, showing that the A-Star is a
composite device.

On a Linux computer, you can see details about the A-Star’s USB interface by running lsusb -v -d 1ffb: in a Terminal. The virtual
serial port can be found by running ls /dev/ttyACM* in a Terminal.

On a Mac OS X computer, the virtual serial port can be found by running ls /dev/tty.usbmodem* in a Terminal.

You can send and receive bytes from an A-Star’s virtual serial port using any terminal program that supports serial ports. Some examples are the
Serial Monitor in Arduino IDE, the Pololu Serial Transmitter Utility, Br@y Terminal, PuTTY, TeraTerm, Kermit, and GNU Screen. Many
computer programming environments also support sending and receiving bytes from a serial port.

7. The A-Star 32U4 Bootloader

The A-Star 32U4 boards come with a USB bootloader that can be used in conjunction with the Arduino IDE or AVRDUDE to load new
programs onto an A-Star. This section documents some technical details of the bootloader for advanced users who want to better understand
how it works. If you just want to get started using your A-Star, it is fine to skip this section.

The A-Star 32U4 Bootloader, which is used on all A-Star 32U4 boards, is based on the Caterina bootloader, which is the bootloader used on
the Arduino Leonardo, Arduino Micro and several other ATmega32U4 boards. The bootloader is open source and its source code is available
on GitHub. The bootloader occupies the upper four kilobytes of the ATmega32U4’s program memory, leaving 28 KB for the user program. The
bootloader’s USB interface consists of a single virtual serial port that accepts the programming commands defined in AVR109. The bootloader
always runs first immediately after the AVR is reset.

Startup logic

The main difference between the A-Star 32U4 Bootloader and Caterina is in the startup logic. This is the part of the bootloader that runs
immediately after the AVR is reset, and it decides whether to run the user program or run the rest of the bootloader. The startup logic of the
Caterina bootloader is designed so that when the RST line goes low, the bootloader will run. This means that if you want to restart your program
using the RST line, it will take 8 seconds before the bootloader times out waiting for an upload and the sketch starts.

The A-Star 32U4 Bootloader has different startup logic that allows you to use the RST line to reset the board with a smaller delay. If the RST
line goes low once, the user program will run after a 750 ms delay. If the RST line goes low twice within 750 ms, then the bootloader will run.
(This behavior is the same as on boards like SparkFun’s Pro Micro.)

The start-up logic of the A-Star 32U4 Bootloader is shown in the flowchart below:

The startup logic for the A-Star 32U4 bootloader.

Brown-out detection

Unlike many other ATmega32U4 boards, the A-Stars have brown-out detection enabled. The brown-out threshold is 4.3 V, and if the voltage on
VCC goes below this then the AVR will reset. The bootloader was designed so that the user program can detect brown-out resets. To do so,
check to see if the BORF bit in the MCUSR register is set, and then clear it later. Here is some example code you could put in your setup
function for detecting brown-out resets:

8. Reviving an unresponsive A-Star

In order to load a new program onto your A-Star, you will need to get it into bootloader mode and send programming commands to it over its
virtual serial port using appropriate software. If you are programming the A-Star from the Arduino IDE, the sketch loaded onto the A-Star will
generally support a special USB command for putting the A Star mode in bootloader mode and the Arduino IDE sends that command

1
2
3
4
5
6
7
8
9

10
11
12
13
14

pinMode(13, OUTPUT);
if (MCUSR & (1 << BORF))
{
 // A brownout reset occurred. Blink the LED
 // quickly for 2 seconds.
 for(uint8_t i = 0; i < 10; i++)
 {
 digitalWrite(13, HIGH);
 delay(100);
 digitalWrite(13, LOW);
 delay(100);
 }
}
MCUSR = 0;

?

In order to load a new program onto your A-Star, you will need to get it into bootloader mode and send programming commands to it over its
virtual serial port using appropriate software. If you are programming the A-Star from the Arduino IDE, the sketch loaded onto the A-Star will
generally support a special USB command for putting the A-Star mode in bootloader mode, and the Arduino IDE sends that command
automatically when you click the Upload button. However, you might find yourself in a situation where the A-Star is unresponsive and that
method will not work. This can happen for two reasons:

You accidentally loaded a malfunctioning program onto the A-Star that is incapable of responding to the special USB command. For
example, your program might be stuck in an infinite loop with interrupts disabled.

You loaded a program which uses a non-standard type of USB interface or no USB interface.

The following sections provide different procedures you can use to revive your A-Star.

8.1. Reviving using the Arduino IDE

This section explains two special methods for programming an A-Star using the Arduino IDE in case your usual method of programming is not
working. These instructions were developed for the Arduino IDE versions 1.0.5-r2 and 1.5.6-r2, and they might need to be modified for future
versions.

Reset button

If you have an A-Star 32U4 Micro, you should connect a momentary pushbutton between the GND and RST pins to serve as a reset button.
The A-Star 32U4 Minis have an on-board reset button you can use. Alternatively, you can use a wire to temporarily connect GND and RST
together instead of using a reset button.

Resetting the board twice within 750 ms makes the board go into bootloader mode. The bootloader will exit after 8 seconds and try to run the
sketch again if it has not started receiving programming commands. To revive the A-Star, you need to make sure you start sending it
programming commands before the 8-second period is over.

In bootloader mode, the yellow LED (the one labeled L) fades in and out. It is useful to look at this LED so you can know what mode the
microcontroller is in. Also, we recommend enabling verbose output during upload using the Arduino IDE’s “Preferences” dialog. Looking at the
LED and looking at the verbose output during the following procedures will help you understand what is going on.

The uploading-before-bootloader method (Arduino 1.0.x only)

The goal of the uploading-before-bootloader method is to select a non-existent serial port in the Arduino IDE and then make sure the Arduino
IDE enters the uploading phase before the microcontroller goes into bootloader mode. This method does not work on the Arduino IDE 1.5.6-r2
and later because those versions of the IDE give a fatal error message if the selected serial port is not present at the beginning of the uploading
phase (e.g. “Board at COM7 is not available.”).

1. Connect the A-Star to your computer via USB.

2. In the “Tools” menu, open the “Board” sub-menu, and select “Pololu A-Star 32U4”.

3. In the “Tools” menu, open the “Port” sub-menu, and check to see if any ports are selected. If the “Port” menu is grayed out or no ports
in it are selected, that is good, and you can skip to step 6.

4. Reset the board twice to get the board into bootloader mode. While the board is in bootloader mode, quickly select the new serial port
that corresponds to the bootloader in the “Port” menu.

5. After 8 seconds, the bootloader will exit and attempt to run the sketch again. Wait for the bootloader to exit. Verify that either the “Port”
menu is grayed out or no ports in it are selected.

6. Click the Upload button. The Arduino IDE will compile your sketch and start uploading it.

7. As soon as the large status bar near the bottom of the IDE says “Uploading…”, press reset the board twice to get into bootloader mode.

The Arduino IDE will stay in the uploading phase for 10 seconds, waiting for a new serial port to appear. Once the serial port of the bootloader
appears, the Arduino IDE will connect to it and send programming commands.

The bootloader-before-uploading method

The goal of the bootloader-before-uploading method is to select the bootloader’s virtual serial port in the Arduino IDE and then make sure the
board is in bootloader mode at the time when the Arduino IDE enters the uploading phase.

1. Connect the A-Star to your computer via USB.

2. In the “Tools” menu, open the “Board” sub-menu and check to see if the “Pololu A-Star 32U4 (bootloader port)” entry is visible. If this
entry is visible, you can skip to step 6.

3 If you are using a 1 0 x version of the Arduino IDE open the file [sketchbook location]/hardware/pololu/boards txt using a text

2. In the “Tools” menu, open the “Board” sub-menu and check to see if the “Pololu A-Star 32U4 (bootloader port)” entry is visible. If this
entry is visible, you can skip to step 6.

3. If you are using a 1.0.x version of the Arduino IDE, open the file [sketchbook location]/hardware/pololu/boards.txt using a text
editor. If you are using a 1.5.x version of the Arduino IDE, open the file [sketchbook location]/hardware/pololu/avr/boards.txt using a
text editor. You can see the sketchbook location in the Arduino IDE preferences dialog. The file you are looking for is part of the A-Star
add-on.

4. In the boards.txt file that you opened, find the lines at the bottom of the file that start with #a-star32U4bp. Uncomment each of
those lines by deleting the “#” character, and then save the file.

5. Close the Arduino IDE and restart it.

6. In the “Tools” menu, open the “Board” sub-menu and select “Pololu A-Star 32U4 (bootloader port)”. This entry is configured so that
the Arduino IDE will send programming commands directly to selected serial port, instead of trying to send a special USB command to the
port to get it into bootloader mode and then waiting for the new port to appear. By selecting this entry, the timing of the programming
process below becomes easier, especially on Windows.

7. Prepare the computer to show you a list of its virtual serial ports. If you are using Windows, this means you should open the Device
Manager. If you are on Linux or Mac OS X, this means you should open a Terminal and type the command ls /dev/tty* but do not
press enter until the board is in bootloader mode in the next step.

8. Reset the board twice to get the board into bootloader mode. While it is in bootloader mode, quickly look at the list of serial ports
provided by your operating system in order to determine what port the bootloader is assigned to.

9. Reset the board twice to get the board into bootloader mode again. While the board is in bootloader mode, quickly select the serial port
of the bootloader in the Arduino IDE. The port can be selected in the “Port” sub-menu under “Tools”.

10. In the Arduino IDE, click the “Verify” button to compile your sketch. This could make the timing easier during the next step.

11. Press the reset button twice to get the board into bootloader mode again. As soon as you see the yellow LED fading in and out, press
the Upload button.

The Arduino IDE will compile your sketch and then upload it to the selected serial port.

If the compilation of the sketch takes longer than 8 seconds, then this procedure will fail because the bootloader will time out and start trying to
run the malfunctioning sketch again. If that happens, try the procedure again using a simpler sketch such as the Blink example that can be found
under File > Examples > 01.Basics > Blink.

8.2. Reviving using AVRDUDE

This section explains a special method for reviving an A-Star using the command-line utility AVRDUDE in case your usual method of
programming is not working. AVRDUDE stands for “AVR Downloader/UploaDEr”, and it is compatible with the A-Star bootloader.

If you have an A-Star 32U4 Micro, you should connect a momentary pushbutton between the GND and RST pins to serve as a reset button.
The A-Star 32U4 Minis have an on-board reset button you can use. Alternatively, you can use a wire to temporarily connect GND and RST
together instead of using a reset button.

1. Connect the A-Star to your computer via USB.

2. Prepare the computer to show you a list of its virtual serial ports. If you are using Windows, this means you should open the Device
Manager. If you are on Linux or Mac OS X, this means you should open a Terminal and type the command ls /dev/tty* but do not
press enter until the board is in bootloader mode in the next step.

3. Press the reset button twice within 750 ms to make the AVR go into bootloader mode. You should see the yellow LED fading in and out
when the AVR is in bootloader mode. While it is in bootloader mode, quickly look at the list of serial ports provided by your operating
system in order to determine what port the bootloader is assigned to.

4. Type the following command in your terminal and replace COM4 with the name of the bootloader’s serial port, but do not press enter
yet. This command will erase the malfunctioning program on the A-Star but preserve the bootloader.

avrdude -c avr109 -p atmega32U4 -P COM4 -e

5. Press the reset button twice within 750 ms to make the AVR go into bootloader mode.

6. Quickly run the command you typed previously. The command needs to be run within 8 seconds of starting the bootloader, or else the
bootloader will exit and try to run the malfunctioning program again.

By following the instructions above, the malfunctioning program on the A-Star will be erased and the A-Star will stay in bootloader mode
indefinitely. You can now load another program onto it using the Arduino IDE or AVRDUDE.

9 R l t d R

By following the instructions above, the malfunctioning program on the A-Star will be erased and the A-Star will stay in bootloader mode
indefinitely. You can now load another program onto it using the Arduino IDE or AVRDUDE.

9. Related Resources

To learn more about using the Pololu A-Star boards, see the following list of resources:

The Arduino IDE has many examples that can run on the A-Stars.

The Arduino website has a Language Reference, a wiki called the The Arduino Playground, and other resources.

The A-Star baords are similar to the Arduino Leonardo and Arduino Micro, so you can search the Internet for relevant projects that
use one of those boards.

Atmel’s ATmega32U4 documentation has the ATmega32U4 datasheet and many related documents.

AVR Libc Home Page: this page documents the standard library of functions that you can use with GNU C and C++ compilers for the
AVR.

LUFA – the Lightweight USB Framework for AVRs

WinAVR

Atmel Studio 6

AVRDUDE

AVR Freaks

